A Review on Herbal Plants with Anti-Tumour Properties

David Arome1*, Agbafor Amarachi2

1Department of Science Laboratory Technology, University of Jos, Nigeria
2Department of Biomedicine, University of Portsmouth, United Kingdom

* Corresponding Author

Received: 09 June 2014
Revised: 21 June 2014
Accepted: 05 July 2014

\section*{ABSTRACT}

Despite the advancement in molecular biology and state of the art facilities, a cure for cancer is unavailable. The significant unwanted side effects associated with the available conventional treatment approach has triggered considerable interest in the exploration of herbal remedies. Presently, Strategies are focused on the incorporation of herbal medicine in the treatment of cancer. Herbal medicines have contributed significantly in the development of modern day pharmaceutical products with novel structures, better safety and efficacy profiles. About 28\% of modern pharmaceutical products are obtained from herbal plants. The objective of the review was to highlight some of the treatment options: Conventional, herbal and unveiling new treatment approach employed in management of cancer disease, in view of the numerous adverse effects associated with the use of conventional anti-cancers drugs.

\textbf{Keywords:} Anti-cancer drugs; conventional approach; herbal medicine; treatment options

\section*{INTRODUCTION}

Cancer remains as one of the key global health care challenges claiming the lives of millions every year. The prevalence of cancer is on a steady increase with an estimated case of 7.6 million deaths recorded in 2008 [1], however, this figure is predicted to double in 2030 [2]. Cancer is a multifactorial systemic disease [3], characterized by abnormal and unrestrained growth of cells in body organs or tissues. It is usually accompanied by explicit defined features such as uncontrollable, proliferation, dedifferentiation and loss of function, invasiveness and metastases [4], which distinguish them from the normal body cells. They are no précised aetiology of cancer but scientists have attributed the possible cause to two main factors: Genetic diversity and environmental factors [5]. Carcinogenic agents associated with environment factors are: X-rays, UV light, viruses, tobacco products, pollutants, and many other chemicals [5]. Despite the major advancement in molecular
biology and state of the art facilities, a cure for cancer is still unavailable. The significant unwanted side effects associated with the available conventional treatment approach has triggered considerable interest in the exploration of herbal remedies. Presently, Strategies are focused on the corporation of herbal medicine in stemming the scourge of cancer disease [6]. Scientific investigations over the years have indicated herbal preparations to be effective against wide range of diseases with little or no side effects associated with their use [7]. Herbal medicines have contributed significantly in the development of modern day pharmaceutical products with novel structures and better safety and efficacy profiles [8]. About 28% of modern pharmaceutical products are obtained from herbal plants [9]. Extracts from herbal plants are regarded as chemical libraries of structurally diverse compounds, therefore constituting a promising approach in drug development and discovery [10]. Herbal plants have unique features that differentiate them from other chemical agents; a single plant may contain broad spectrum of bioactive ingredients [11]. Herbal plants have less adverse effects profile and have proven to compete favourable in efficacy like their synthetic counterpart [12-14]. The objective of the review was to highlight some of the treatment options: Conventional, herbal and unveiling new treatment approach employed in management of cancer disease.

Cancer promoting agents

Cancer promoting agent for example virus, bacteria and parasitic (infectious microbes) altered the genetic permutation that regulate the working mechanism of the cell signal that control cell division and growth. Infectious microbes can trigger cancer through the following ways:

1. **Alteration of the genetic structure:** Virus depends solely on its host to replicate. On entering the body interact directly with the DNA. This interaction altered the genetic configuration, which lead to the activation of cancer promoting genes, or through inactivation of the cancer suppressor genes [15].

2. **Chronic inflammation:** Infectious microbes can trigger the body immune system to initiate cascade of activities that can lead to inflammation. Persistent inflammation can as well triggered abnormal rapid division of the cell than normal rate, which increase the likelihood of continue genetic mutation which can lead to cancer [15].

3. **Reduced immune mechanism:** Infectious microbes can reduce the effectiveness of the body defence mechanism in fighting and recognising cancer promoting agents [15].

Common viruses that promote cancer

Oncogenic viruses infect normal cells and cause alterations in the cell’s genetic material. These genetic alterations can cause specific types of malignant and benign cancer [16.] Oncogenic virus can affect either the DNA or RNA. The viruses that commonly promote cancer are itemized below:

1. Human papillomavirus (genital carcinomas)
2. Hepatitis B (liver carcinoma)
3. Epstein-Barr virus (Burkitt’s lymphoma and nasopharyngeal carcinoma)
4. Human T-cell leukemia
5. Virus (T-cell lymphoma)
6. Herpes virus called KSHV (Kaposi’s sarcoma and some B cell lymphomas) [16]
Table 1. Differences between normal and cancer cells [19]

<table>
<thead>
<tr>
<th>Normal cell divide in an orderly fashion</th>
<th>Normal cell divide in an orderly fashion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer cell violates the cell signal that control the normal division of the cell, thereby dividing incorrectly and spread to a wide area</td>
<td></td>
</tr>
<tr>
<td>Function at a normal metabolic rate and reproduce themselves in a regulated pattern</td>
<td>Function at a normal metabolic rate and reproduce themselves in a regulated pattern</td>
</tr>
<tr>
<td>Obtained most of it energy (about 70%) through the Kreb’s cycle mechanism</td>
<td>Obtained most of it energy (about 70%) through the Kreb’s cycle mechanism</td>
</tr>
<tr>
<td>Cancer cell overactive or overproduce themselves, thereby requiring more nutrients</td>
<td></td>
</tr>
<tr>
<td>Possesses an inbuilt blood vessels</td>
<td>Possesses an inbuilt blood vessels</td>
</tr>
<tr>
<td>Lack inbuilt blood vessels system (by basically through angiogenesis)</td>
<td></td>
</tr>
<tr>
<td>Derive most of its energy using oxygen</td>
<td>Derive most of its energy using oxygen</td>
</tr>
<tr>
<td>Develop most of its energy in the absence of oxygen</td>
<td></td>
</tr>
<tr>
<td>Have DNA in their genes and chromosomes that function normally</td>
<td>Have DNA in their genes and chromosomes that function normally</td>
</tr>
<tr>
<td>Develop an abnormal DNA or genes structure</td>
<td></td>
</tr>
</tbody>
</table>

Pathogenesis of cancer

The pathogenesis of cancer is a complex one. The three main changes that characterized the pathogenesis of cancer are;

1. The activation of proto-oncogenes to oncogenes: Proto-oncogenes are genes that are found in every cell. Mutation of the oncogenes resulting from damage and alteration by exposure to carcinogens can cause a cell to grow unrestrainedly and infiltrate and destroy normal tissues [17].

2. The inactivation of tumour suppressor genes: These genes normally inhibit cell division and prevent survival of cells that have damaged DNA. Mutation of the suppressor genes as a result of exposure to carcinogens altered the control mechanism of the genes that have the ability to suppress malignant change. The loss of function of tumour suppressor gene forms the very basis of pathogenesis of cancer [17]. Mutations of these two principle genes; Oncogenes and tumour suppressors accelerate and prevent the normal inhibition of cell growth.

3. Mutation of the DNA repair genes: DNA genes repair and maintain the structural integrity of the chromosomes. Exposure of these genes to environmental factors like UV light, radiation can lead to their damage as well as error in the expression of DNA can cause mutation.

Tumour biology

“Misbehaving” cancer cells exist as autonomy cells without following the normal rules of cell growth and division resulting to tumour. Tumours grow in a series of multistep

1. Hyperplasia
2. Dysplasia
3. Anaplastic

The last step occurs when the cells in the tumour metastasize, which means that they can invade surrounding tissue, including the bloodstream, and spread to other locations. This is the most serious type of tumour, but not all tumours progress to this point. Non-invasive tumours are said to be benign [18].
Classification of cancer
1. Carcinomas: Carcinomas are cancer that stem from cells covering the surface layer or lining membrane of organ. Common examples of carcinomas are: breast, lung, skin rectum.
2. Sarcomas. This category of cancer is associated with connective tissues. Examples of sarcoma: fibrosarcoma, chondrosarcoma.
3. Leukemia: This cancer type occurs as a result of disorganization and rapid proliferation of the blood forming tissue within the bone marrow and often accumulates in the blood stream.
4. Lymphoma and myelomas. This type of cancer originates from the immune system.
5. Adenomas. This type of cancer stem from the thyroid, pituitary, adrenal and other glandular glands [19].

Tumour markers
Tumour marker also known as biomarker is a glycoprotein that is altered quantitatively or qualitatively in precancerous or cancerous state, this changes can be detected by bioassay [20]. The alteration or changes in the biomarker can be as a result of tumour itself or as a result of response to tumour cells by the surrounding normal tissues [20]. Tumour markers are mostly protein, genes, enzymes, oncogenes, antigens measured by appropriate bioassay.

Clinical application of biomarkers
1. Screening and early detection of cancer
2. Prognosis and prediction of therapeutic response to treatment
3. Monitoring of disease and recurrence
4. Screening of high-risk individuals
5. Diagnostic confirmation
6. Determination of the present of cancer [21]

Increase in biomarkers do not necessary indicates the present of cancer. Biomarkers increase in some disease conditions other than cancer, varying over time, and in some cases may remain low until cancer advanced.

Table 2. Different cancer types and their test modalities

<table>
<thead>
<tr>
<th>Cancer type</th>
<th>Biomarkers</th>
<th>Found in</th>
<th>Test modality</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prostate</td>
<td>PAP</td>
<td>Serum</td>
<td>ICMA, ICMA</td>
<td>22,23</td>
</tr>
<tr>
<td></td>
<td>PSA</td>
<td>Blood</td>
<td>ICMA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-cadherin</td>
<td>Tissue</td>
<td>IHC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PS3</td>
<td>Tissue</td>
<td>IHC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Epidermal growth receptor</td>
<td>Tissue specimen</td>
<td>IHC</td>
<td></td>
</tr>
<tr>
<td>Breast cancer</td>
<td>CA27.29</td>
<td>Serum protein</td>
<td>ICMA</td>
<td>24,25</td>
</tr>
<tr>
<td></td>
<td>BRCA (BRCA1 or BRCA2)</td>
<td>Blood</td>
<td>PCR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CA15-3</td>
<td>Serum</td>
<td>ICMA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CEA</td>
<td>Serum</td>
<td>ICMA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HER2/neu</td>
<td>Tissue</td>
<td>ICH, EIA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MIB-1</td>
<td>specimen</td>
<td>IHC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tissue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cancer Type</td>
<td>Biomarkers</td>
<td>Sample Type</td>
<td>Methods</td>
<td>References</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------------</td>
<td>-------------</td>
<td>--------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Lung</td>
<td>CEA, ACTH, AFP, CA27.29</td>
<td>Serum</td>
<td>ICMA</td>
<td>24, 26</td>
</tr>
<tr>
<td>Kidney</td>
<td>Bladder tumour antigen</td>
<td>Tissue</td>
<td>EIA, Cytology</td>
<td>24</td>
</tr>
<tr>
<td>Ovarian</td>
<td>BHCG, CA-125, BRCA, CEA, HER2/neu</td>
<td>Tissue, Whole blood, Serum</td>
<td>ICMA, MEIA, PCR, IHC</td>
<td>27, 28, 29</td>
</tr>
<tr>
<td>Cervical</td>
<td>CA125, HPV, EGFR</td>
<td>Serum, Pap smear, Tissue specimen</td>
<td>ICMA, DNA, IHC</td>
<td>24, 30</td>
</tr>
<tr>
<td>Colonrectal</td>
<td>AFP, CA125, CEA, Faecal gloobin, Lipid associated sialic acid, Colaris AP (APC, FAP)</td>
<td>Serum, Serum, Blood, Blood, Blood</td>
<td>ICMA, EIA, IHC, Spectophotom, PCR</td>
<td>24</td>
</tr>
<tr>
<td>Bladder</td>
<td>BTA, Immunocyt, Nuclear matrix protein, PS3 tomour suppressor</td>
<td>Urine, Urine, Tissue</td>
<td>EIA, ICC, EIA, IHC</td>
<td>24</td>
</tr>
<tr>
<td>Liver</td>
<td>AFP, BHCG, CA19.9, CA27.29</td>
<td>Serum protein, Serum, Serum, Serum</td>
<td>ICMA, ICMA, EIA, ICMA</td>
<td>24</td>
</tr>
<tr>
<td>Pancreatic</td>
<td>AFP, BHCG, CA125, CA19-19, CEA</td>
<td>Serum, Serum, Serum, Serum</td>
<td>ICMA, ICMA, EIA, ICMA</td>
<td>24, 31</td>
</tr>
<tr>
<td>Leukemia</td>
<td>Cd 33, FLT3, BCR/ABL</td>
<td>Blood, Blood, Bone marrow</td>
<td>Cytometry, PCR, FISH</td>
<td>24, 32</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>B-cell rearrangement, Cd 20, Beta2 microglobin</td>
<td>Whole blood, Blood, Serum</td>
<td>PCR, Cytometry, ICMA</td>
<td>24</td>
</tr>
</tbody>
</table>
These tumour markers are used in combination with biopsy to give a better picture of the clinical relevance of the cancer.

Table 3. Acronyms for biomarkers and diagnostic test modalities [24]

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEA</td>
<td>Carcinoembryonic antigen</td>
</tr>
<tr>
<td>BHCG</td>
<td>Beta human chorionic gonadotrophin</td>
</tr>
<tr>
<td>ACTH</td>
<td>Andrino-corticothyroid hormone</td>
</tr>
<tr>
<td>AFP</td>
<td>Alpha-fetoprotein</td>
</tr>
<tr>
<td>EGFR</td>
<td>Epidermal growth factor receptor</td>
</tr>
<tr>
<td>BTA</td>
<td>Bladder tumour antigen</td>
</tr>
<tr>
<td>PSA</td>
<td>Prostate specific antigen</td>
</tr>
<tr>
<td>PAP</td>
<td>Prostatic acid phosphatase</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerize chain reaction</td>
</tr>
<tr>
<td>HPV</td>
<td>Human papillovirus</td>
</tr>
<tr>
<td>ICMA</td>
<td>Immunochemiluminometric assay</td>
</tr>
<tr>
<td>EIA</td>
<td>Enzymes immunoassay</td>
</tr>
<tr>
<td>FISH</td>
<td>Fluorescence in-situ hybridization</td>
</tr>
<tr>
<td>ICC</td>
<td>Immunocytochemistry</td>
</tr>
<tr>
<td>IHC</td>
<td>Immunohistochemistry</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
</tbody>
</table>
New prospect of diagnostic test modalities

Genomics
The science of genomics is basically the study of structural changes in DNA or mutation of the DNA. DNA is the molecule that control functional mechanism of all cells [21]. Alteration to the DNA permutation as a result of exposure to carcinogens can be checked in urine, serum, stool urine and tissues and this may be useful modality to scientist in the early detection of cancer and effectiveness of therapy [21]. Looking at the patterns of changes is likely to prove more useful than looking for single DNA changes [32].

Proteomics
Unlike genomics, proteomics is the study of protein shape, function, and patterns of expression. Proteomic knowledge may serve as a very important screening tool for cancers. With this new testing modality thousands of protein can be viewed at a time. This helps in the assessment of the protein levels associated with certain type of cancer [21]. These new testing prospect is still in the early stages of development. Very few of these methods are in routine use.

Table 4. Classes of anti-cancer drugs and their mechanism of reactions [4, 34]

<table>
<thead>
<tr>
<th>Classes of anti-cancer</th>
<th>Mechanism of reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkylating agent</td>
<td>Disturb the integrity and function of DNA thereby altering the synthesis of DNA and cell division</td>
</tr>
<tr>
<td>Anti-metabolites</td>
<td>They act on intermediary metabolic pathway of proliferating cells, thereby preventing DNA and RNA synthesis</td>
</tr>
<tr>
<td>Natural products tic (Anti-mitotic)</td>
<td>Act by binding to specific β-tubulin and block its ability to polymerize with α-tubulin into microtubules</td>
</tr>
<tr>
<td>Anti-biotic</td>
<td>Inhibit rapid proliferation of normal cell and cancer origin, thereby making a single strand to break in DNA, possibly through a free radicle intermediate or as result of the action of lipoisomearse II</td>
</tr>
<tr>
<td>Hormones</td>
<td>Suppress hormone secretion or antagonise hormone</td>
</tr>
<tr>
<td>Miscellaneous agents</td>
<td>Inhibit the enzymes ribonucleoside diphose reductase which catalyzes the reductive conversion of ribonucleoside to deoxyribonucleoside</td>
</tr>
</tbody>
</table>

General toxicological profile of anticancer drugs:

a. Bone marrow toxicity
b. Gastrointestinal tract toxicity
c. Hair follicle toxicity
d. Neurotoxicity
e. Renal toxicity
f. Ototocity
g. Cardiomyopathy

New treatment options

a. Chemo-immunotherapy: This technique involves the direct attachment of chemotherapeutic agents with anti-bodies. The anti-bodies then delivery the agent directly into the cancer cells without harming the normal body cells. The chemotherapeutic agents target the cancer cells through the anti-bodies as a conveying vehicle [17].
b. **Radio-immunotherapy**: This new technique involves the cooperation of antibodies to radioactive atoms (particles), specifically, targeting the deadly radiation. Side effects; destruction of bone marrow [17].

c. **Gene therapy**: The rationale behind the used of this new technique is to replace the damaged genes with a new copy of a working gene. The application of gene based therapy also focus on targeting the damaging cancer cell of DNA to undergo self-induced apoptosis [18].

Table 5. Herbal remedies used in the management of cancer

<table>
<thead>
<tr>
<th>Plant family</th>
<th>Part used</th>
<th>Phytochemical constituents</th>
<th>Uses</th>
<th>Models</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persea americana (Lauraceae)</td>
<td>Stem, root and bark</td>
<td>Saponnins, tannins, cardiac glycosides, flavonoids terpenes, phlobatanis</td>
<td>Treatment of tumour, trypanocidal activity.</td>
<td>Bench top bioassay: Antiproliferative model (using Sorghum bicolor seeds), Cytotoxic model; Raniceps ranninus Sub-G1 apoptosis assay and flow Cytometry, cell viability assay, Structural analysis and DAPI staining, Immunoblotting.</td>
<td>35-38</td>
</tr>
<tr>
<td>Piper crocatum Ruiz and pav</td>
<td>Leaves</td>
<td>Saponins, tannins, terpenes</td>
<td>Breast cancer treatment</td>
<td></td>
<td>39-40</td>
</tr>
<tr>
<td>Zingiber zerumbet (Zingiberaceae)</td>
<td>Rhizome</td>
<td>Zerumbone</td>
<td>Constipation, stomachache, fever</td>
<td>Cell proliferation assay,</td>
<td>41-44</td>
</tr>
<tr>
<td>Calea pinnatifida</td>
<td>Aerial</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Name</td>
<td>Part Used</td>
<td>Active Constituents</td>
<td>Biological Activities</td>
<td>References</td>
<td></td>
</tr>
<tr>
<td>----------------------------</td>
<td>-----------</td>
<td>---</td>
<td>--</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Cymbopogon citratus</td>
<td>Leave and root</td>
<td>Saponins, flavonoids, cardiac glycosides, ---</td>
<td>Antiplasmodial, antileishmanial, acaricidal, antifungal, antimicrobial, and Cytotoxic assay</td>
<td>56-57</td>
<td></td>
</tr>
<tr>
<td>Astrodaucus persicus</td>
<td>Root</td>
<td>---</td>
<td>Management of pain and inflammation, tumour, diabetes, ---</td>
<td>58-60</td>
<td></td>
</tr>
<tr>
<td>Juglans regia</td>
<td>Root bark</td>
<td>α-tocopherol, γ-tocopheral, ellagic acid</td>
<td>Management of prostate cancer, reducing apoptosis, inhibit angiogenesis, reduction of low density erythema, eczema, wounds, inflammation of skin, mouth dryness, sore throat, ulcers, goiter, tonsillitis, furunculosis, constipation, aching bones, abscesses, fistulas and cancer.</td>
<td>61-65</td>
<td></td>
</tr>
<tr>
<td>Scrophularia oxysepa</td>
<td>Leaf and stem</td>
<td>iridoids, ridoid glycosides, phenylpropanoid glycosides, phenylethanoid glycosides, resinosid glycosides, sugar esters, flavonoids, terpenoids and saponins</td>
<td>Management of pain and inflammation, tumour, diabetes, ---</td>
<td>66-76</td>
<td></td>
</tr>
<tr>
<td>Kedrostis Foetidissima</td>
<td>Leaf and stem</td>
<td>---</td>
<td>Treatment of tumour, ---</td>
<td>77-78</td>
<td></td>
</tr>
<tr>
<td>Ononis hirta</td>
<td>Aerial part</td>
<td>Alkaloids, terpenoids, flavonoids</td>
<td>Possesses antitumour property, pain. Anti-proliferative assay</td>
<td>79-82</td>
<td></td>
</tr>
<tr>
<td>Verbascum</td>
<td>Flower</td>
<td>Terpenoids</td>
<td>Used folkloric MTT assay</td>
<td>79-82</td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Part</td>
<td>Compounds</td>
<td>Uses</td>
<td>Assays</td>
<td>References</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------</td>
<td>------------------------------------</td>
<td>--</td>
<td>-------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Anona muricata</td>
<td>Seed</td>
<td>Alkaloids, flavonoids, tannins, saponins, muricine</td>
<td>Used in the treatment of influenza, desentery, tumour, cancer, inflammation, as insect repellent</td>
<td>Cytotoxicity assay</td>
<td>83-85</td>
</tr>
<tr>
<td>Andrographis paniculata</td>
<td>Leaf</td>
<td>Alkaloids, saponins</td>
<td>Possesses antiviral, anti-biotic activity anti-tumour, immune-stimulant</td>
<td>Cytotoxicity assay</td>
<td>83-85</td>
</tr>
<tr>
<td>Garcinia kola</td>
<td>Leaf</td>
<td>Alkaloids, flavonoids, saponins</td>
<td>Used as an anti-ulcer property, anti-pyretic effect, anti-inflammatory property</td>
<td>MTT assay</td>
<td>83-85</td>
</tr>
<tr>
<td>Cuscuta Reflexa Roxb</td>
<td>Whole plants</td>
<td>kaempferol-3-O-glucoside, astragallin, myrecetin, benzopyrones, glucopyranosides, propenamide, flavonols, quercetin and quercetin-3-O-glucoside, δ-sitosterol, and bergenin</td>
<td>Impotence, premature ejaculation, sperm leakage, frequent urination, ringing in the ears, lower back pain, sore knees, leucorrhea, dry eyes, blurred vision, and tired eyes.</td>
<td>Cell viability assay</td>
<td>86-91</td>
</tr>
<tr>
<td>Abelmoschus moschatus</td>
<td>Leaf and seed</td>
<td>Phenols, flavonols, quercetin</td>
<td>Treatment of intestinal complications, ophthalmic, aphrodisiac</td>
<td>Anti-proliferative assay</td>
<td>92-93</td>
</tr>
<tr>
<td>Jatropha curcus</td>
<td>Leaf</td>
<td>Flavonoids, phenols, saponins</td>
<td>Management of pain and inflammation, anti-inflammatory effect by brine shrimp assay</td>
<td>Cytotoxic effect</td>
<td>94-98</td>
</tr>
</tbody>
</table>
CONCLUSION

The significant unwanted side effects associated with the available conventional treatment approach has triggered considerable interest in the exploration of herbal remedies. Herbal plants have less adverse effects profile and have proven to compete favourable in efficacy like their synthetic counterpart. In a nutshell, the application of herbal medicine has proven to be effective and can as well serve as an alternative option in the management of cancer.

REFERENCES

http://www.cancer.net/all-about
cancer/cancernet-featurearticles/treatments-
tests-and-procedures/understanding-tumor-
markers on October 24, 2013.

Updated 10/30/2013. Available at http://www.cancer.org

30. Lab Tests Online. Tumor Markers. Available at
http://labtestsonline.org/understanding/analy-
tes/tumor-markers/start/2 on October 25, 2013.

31. Lee P, Pincus MR and McPherson RA. Diagnosis
and management of cancer using serologic
tumor markers. In: McPherson RA, Pincus MR,
eds. Henry’s Clinical Diagnosis and Management
by Laboratory Methods. 21st ed., Philadelphia,

32. Chen CH et al. Lead time of carcinoembryonic
antigen elevation in the postoperative follow-up
of colorectal cancer did not affect the survival
rate after recurrence. International Journal of
Colorectal Disease 2010; 25: 567-571.

33. Hayes DF. Biomarkers. In: DeVita VT, Lawrence
TS, Rosenberg SA, eds. Cancer Principles &
Practice of Oncology. 9th ed, Philadelphia, PA:
Lippincott Williams & Wilkins, 2011; p 694.

34. Herdman JG, Limbird LE., eds. Goodman and
Gulman’s. The Pharmacological Basis of
687.

35. Aiyinde BA, Omogbai EKI and Ikpefan EO.
Comparative Cytotoxic and anti-proliferative
effects of Persea americana Mill (Lauraceae) leaf,
stem and root bark. Nigerian Journal of

36. Aiyinde BA and Agbakwuru U. Cytotoxic and
growth inhibitory effects of the methanol extract
Structium sparganophora Ktze (Asteraceae)
leaves. Pharmacognosy Magazine 2010; 6(24):
293-297.

37. Sofowora A. Medicinal plants and traditional
medicine in Africa. Ibadan: Spectrum books
Limited; 2008, p 199.

38. Evans WC. Trease and Evans Pharmacognosy.

39. Sandra F et al. Inositol hexakisphosphahate blocks
tumor cell growth by activating apoptotic
machinery as well as by inhibiting the Akt/NFkB-
mediated cell survival pathway. Carcinogenesis
2002; 23: 2031- 2041.

40. Arung ET, Shimizu K and Ryuichiro K. Inhibitory
effect of isoprenoid-substituted flavonoids
isolated from Artocarpus heterophyllus on
melanin biosynthesis. Planta Medica 2006; 72:
847-850.

41. Wicaksono BT et al. Antiproliferative effect of the
methanol extract of Piper crocatum Ruiz &
Pav Leaves on Human Breast (T47D) Cells In-vitro
Tropical Journal of Pharmaceutical Research

42. Lin L and Hwang P. Anti-proliferative effects of
oxygenated sterol: positive correction with
binding affinities for the antiestrogen binding

43. Rashid R and Pohie AHL. The anti-proliferative
effects of Zingiber zerumbet extracts and
fractions on the growth of human breast
carcinoma cell lines. Malaysian Journal

44. Mathies HWD, Ziu B and Ourssion G. Cytotoxic
component of Zingiber zerumbet, Curcuma
zedoria and Curcuma domestica. Phytochemistry

45. Kato T et al. Enhanced suppression of tumour
growth by combination of angiogenesis inhibitor
O-(chloroacetyl-carbamoyl) fumagillo (TNP-470)
and cytotoxic agents in mice. Cancer Research

based semiautomated colorimetric assay I:
assessment of chemosensitivity testing. Cancer

47. Battle TE et al. Sustained complete remission of
CLL associated with the use of a Chinese herbal
67. Passalacqua N, Guerrera PM and De Fine G. Contribution to the knowledge of the folk plant
medicine in Calabria region (Southern Italy). Fitoterapia 2007; 78: 52-68.
87. Niwa M et al. Two New Phenylpropanoid Glycosides from Wikstroemia sikokiana.

Cite this article as: